Sample Courses, Robotics

Robotics Sample Courses

Introduction to Robotics

The course is intended to provide an introduction and a very interdisciplinary experience to robotics. The structure of the course is modular and reflects the perception-control-action paradigm of robotics. The course, however, aims for breadth, covering an introduction to the key aspects of general robotic systems, rather than depth, which is available in later more advanced courses. Applications addressed include robotics in space, autonomous terrestrial exploration, biomedical applications such as surgery and assistive robots, and personal robotics. The course culminates in a hardware project centered on robot integration.

AER521H1S Mobile Robotics and Perception

The course addresses fundamentals of mobile robotics and sensor-based perception for applications such as space exploration, search and rescue, mining, self-driving cars, unmanned aerial vehicles, autonomous underwater vehicles, etc. Topics include sensors and their principles, state estimation, computer vision, control architectures, localization, mapping, planning, path tracking, and software frameworks. Laboratories will be conducted using both simulations and hardware kits.

CSC384 Introduction to Artificial Intelligence

Theories and algorithms that capture (or approximate) some of the core elements of computational intelligence. Topics include: search; logical representations and reasoning, classical automated planning, representing and reasoning with uncertainty, learning, decision making (planning) under uncertainty. Assignments provide practical experience, both theory and programming, of the core topics.

ECE470H1S Robot Modeling and Control

Classification of robot manipulators, kinematic modeling, forward and inverse kinematics, velocity kinematics, path planning, point-to-point trajectory planning, dynamic modeling, Euler-Langrange equations, inverse dynamics, joint control, computed torque control, passivity-based control, feedback linearization.

MIE443H1S: Mechatronic Systems: Design and Integration

The course aims to raise practical design awareness, provide pertinent project engineering methodology, and generate a know-how core in integration of complex automation. This course has mainly practical content, and is integral and useful in the training and education of those students who plan to be employed in areas related to intelligent automation, as well as to the breadth of knowledge of all others. Although emphasis will be on robotic-based automation (mechatronics), the learning will be useful in all domains of system integration. This course will introduce students to the basics of integration, methodology of design, tools, and team project work. The course will be monitored based on projects from a selected list of topics. The lectures will be in format of tutorials as preparation and discussions on project related issues. A main goal is to bring the methods, means and spirit of the industrial design world to the class room. Emphasis will be on understanding the elements of integration, methodology and approaches, and will involve numerous case studies. Specifically the course will provide a practical step-by-step approach to integration: specifications, conceptual design, analysis, modeling, synthesis, simulation and bread-boarding, prototyping, integration, verification, installation and testing. Issues of project management, market, and economics will be addressed as well.