What’s contributing to the striking gender gap in the AI field? U of T Engineering study takes a closer look

July 2, 2020

By Liz Do


“The talent gap isn’t closing,” says U of T Engineering alumna Kimberly Ren (EngSci 2T0), who led the first study to quantitatively establish predictors for women pursuing ML/AI careers. (Photo courtesy of Kimberly Ren)

A study led by U of T Engineering alumna Kimberly Ren (EngSci 2T0) is the first to quantify predictors that could lead women towards, or away from, pursuing careers in machine learning (ML) and artificial intelligence (AI).

A 2018 report by the World Economic Forum found that women make up 22 percent of global AI professionals, with that proportion oscillating between 21 and 23 percent over a four-year trend.

“The talent gap isn’t closing,” says Ren, whose fourth-year thesis project was awarded the Best Paper Award at the American Society for Engineering Education Conference, Women in Engineering Division. She led the study under the supervision of Professor Alison Olechowski (MIE, ISTEP).

“What I hope this research does is find some reasoning behind this gap, so that we can increase the persistence of women in the field going forward.”

Ren surveyed 279 undergraduate and graduate students at U of T Engineering who were studying ML/AI — 38 percent identified as female, 61 percent identified as male. She then measured how variables, such as professional-role confidence and discrimination experiences, positively or negatively impacted their persistence in pursuing ML/AI or general engineering careers. Their findings revealed:

  • Expertise confidence — a self-assessment of whether one feels they’ve learned what they need to be successful — is a significant positive predictor for both women and men;
  • Career-fit confidence — when one feels they are a good fit for the career they are considering — is a significant positive predictor for women and men; and,
  • Gender discrimination, from peers or teaching staff, was a significant negative predictor for only women students.

“These findings might sound quite logical, but it’s important to quantitatively show that biased experiences have a real impact on what careers women choose,” says Ren.

And although the project was designed to study the gender gap in students pursuing and persisting in AI/ML studies at U of T Engineering, their findings also revealed a severe lack of representation of Black and Indigenous students. “Of the 279 students surveyed, only 2 percent self-identified as Black, and 0 percent as Indigenous,” says Olechowski.

“This was shown to be the case in a sample size where 84 percent of students self-identified as a visible minority,” adds Ren. “So even when visible minorities are significantly represented, representation of Black and Indigenous students does not necessarily follow. There needs to be future work that focuses on the unique experiences and predictors of Black students that can elaborate further.”

Their work adds to an expanding list of research focused on biases within ML/AI. Fellow engineering science alumna Deborah Raji (EngSci 1T9) led a study last winter that revealed the baked-in racial and gender biases in facial-recognition services. Raji’s research, alongside that of computer scientist and digital activist Joy Buolamwini, has led to some accountability in the industry.

“ML/AI has the potential to significantly shape future technologies, which only underscores the need to increase the diversity of workers within the field,” says Ren. “If we don’t see a change, then biased teaching, inputs, algorithms, applications and decisions will lead to further discriminatory and negative social consequences.”

The paper also provides recommendations to eliminate gender discrimination in engineering education, including mandatory anti-discrimination training modules, as well as accessible and transparent reporting of discriminatory behaviour that would affect faculty/teaching staff promotion and progress reporting.

Olechowski is using the findings to further inform her approach as an educator. As a researcher, she is keen to supervise future students to further the work in this area.

“It’s great that we’re seeing a higher proportion of women studying engineering, but seeing this study makes me realize that we need to ensure that we’re also matching students with mentors in industry — exposing them to people who look like them and make them feel like they belong. I want to be intentional with the role models that I present to my class.”

This article was originally published in the U of T Engineering News.