Posts Tagged: Erin Richardson

Student team studies human genetics in microgravity

TelOmG Team Photo

The members of team TelOmG, from left to right, are Erin Richardson (EngSci Year 4), Anthony Piro, Miranda Badovinac in the top row; Taylor Peters, Dunja Matic (both EngSci Year 4), Luca Castelletto (EngSci Year 3) in the middle row; Samantha Aberdein, Emma Belhadfa (EngSci Year 3), Nicole Richardson, Krish Joshi, and MacKenzie Campbell (EngSci 2T0 + PEY, ChemE MASc candidate) in the bottom row. (Photos courtesy of team TelOmG)

 

A team of U of T students is preparing to see their research take off next week. They are among just six university teams from across Canada selected to conduct a study in a microgravity environment aboard the National Research Council Canada’s (NRC) Falcon-20 jet — the same plane used to train the Canadian Space Agency’s astronauts. 

As part of the Canadian Reduced Gravity Experiment Design Challenge (CAN-RGX), the team, called TelOmG, has spent the past year designing and building a unique experiment to examine the impact of spaceflight on astronauts’ genes. 

During the flight, scheduled for August 19, the students will investigate the effects of changes in gravity on the genetic regulation of human telomeres. Telomeres are protective caps at the ends of our chromosomes that are linked to genomic stability. Shortening of telomeres is associated with aging, while lengthening can be associated with cancer. 

The idea for the experiment came to team lead Erin Richardson (EngSci Year 4) while reading NASA’s landmark Twins Study, an investigation of spaceflight’s effects on the human body. The study examined astronaut Scott Kelly, who spent nearly a year in space, and his twin brother Mark who remained earthbound, and found Scott’s telomeres unexpectedly grew longer during his space flight. They returned to normal shortly after his return to Earth. In contrast, his twin’s telomeres remained stable during the same period.   

“Our experiment investigates whether this increase in telomere length was due to reduced gravity or some other factor, such as increased radiation or stress during the spaceflight,” says Richardson. 

Flying parabolic manoeuvres on the NRC’s Falcon 20 will allow the team to isolate microgravity from the other factors present on the International Space Station. However, while Scott Kelly spent months in space, the experiment will only undergo five periods of 20 seconds of microgravity each. 

The students had to devise a way to test whether telomeres are affected by microgravity in under 20 seconds. “Telomere length won’t change that fast,” says Richardson. “The key was to focus on the transcription of the genes that control them. Previous studies found transcriptomes changed significantly within 20 seconds of altered gravity.” 

Richardson has built her team with students from EngSci’s aerospace and biomedical systems majors and the life sciences: MacKenzie Campbell (EngSci 2T0 + PEY, ChemE MASc candidate)Dunja MaticTaylor Peters (both EngSci Year 4), Emma BelhadfaLuca Castelletto (both EngSci Year 3), physiology master’s student Anthony Piro, Year 3 life sciences student Miranda Badovinac, and Grade 12 students Samantha Aberdein, Krish Joshi, and Nicole Richardson. 

The aerospace engineering team members focused on designing and building the physical apparatus while biomedical systems and life science students designed and tested the experiment’s scientific methods. 

“The team brought together students with different areas of expertise, several age groups, and diverse mentors. One of the beautiful things that happens when you bring together people with so many different backgrounds is the ingenuity in the questions they ask each other,” says Professor Rodrigo Fernandez-Gonzalez (BME), chair of EngSci’s biomedical systems major. “Those questions often challenge dogmas and assumptions, and can ultimately lead to amazing discoveries.” 

To test their hypothesis that microgravity contributes to changes in gene transcription related to telomeres, the students will “freeze cells in time” by preserving their nucleic acids before and after each short period of microgravity. They will analyze the nucleic acids after the flight for changes in the expression levels of genes that regulate telomeres.   

The experiment’s apparatus consists of a syringe filled with a stabilization solution and connected to a series of chambers containing live cells. The electronic control system will inject the solution into the correct chamber when manually triggered by the students on board the flight just before and after each period of microgravity. Some samples are frozen before any periods of hypergravity or microgravity to control for environmental conditions on board the jet. 

TelOmG injection system

The TelOmG injection system. (Graphic courtesy of team TelOmG)

The entire experiment had to fit into a 50 cm cube and weigh no more than 45 kg, among other constraints. “Little things that you wouldn’t normally consider are much more challenging in microgravity,” says Castello, the team’s mechanical lead. “For example, we had to ensure everything is absolutely leak-proof and secured so that there’s no chance of small components or liquid floating around the plane’s cabin. Since we are dealing with cells, we had to create a sterile system while also minimizing bubbles that could interfere with our fluid pathways.” 

Team TelOmG presented their proposal at the Johnson Space Centre Astronomical Society in June and has been invited to share their findings at the International Aeronautical Congress in Dubai in October. 

 Working in the midst of a pandemic presented additional challenges. Access to wet labs and lab safety training was restricted. “We’ve been blown away by the support we received from professors, researchers and private companies during this time,” says Belhadfa. “They helped us to get what we needed when public health restrictions created obstacles.”  

Team members also had to work on components in isolation for many months. “Normally when we work in a team and something goes wrong during equipment testing, we have a good laugh together,” says Castelletto. “It’s a lot less funny when you’re all alone in your house.” 

Planning and testing a complex experiment from start to finish has been an eye-opening journey for the team. “From our experiences in design courses like Praxis, we knew to expect things not to go as planned,” says Campbell. “We really learned to take a wide view of the project and lean on our project management skills.” 

Team members Piro and Richardson will take part in the flight next week. 

This article originally appeared in the U of T Engineering News.


‘My dream job’: How a PEY Co-op student is helping develop a new generation of autonomous space robots

Erin Richardson at MDA

PEY Co-op student Erin Richardson (Year 3 EngSci) is spending 16 months at Canadian space engineering firm MDA, where she is working on a new generation of autonomous robots for the forthcoming Lunar Gateway space station. (Photo: MDA)

 

By Tyler Irving

Erin Richardson (Year 3 EngSci) was in Grade 9 when she decided she wanted to be an astronaut.

“We had a science unit on outer space, and I remember being completely fascinated by the vast scale of it all,” she says. “Thinking about how big the universe is, and how we’re just a tiny speck on a tiny planet, I knew I wanted to be part of exploring it.”

Richardson started following Canadian astronaut Chris Hadfield on social media and watching videos of his daily life on the International Space Station. She also started reading about aerospace and doing everything she could to break into the industry, including getting her Student Pilot Permit.

It was in a Forbes article about women in STEM that she first read the name of Kristen Facciol (EngSci 0T9).

A U of T Engineering alumna, Facciol had worked as a systems engineer at Canadian space engineering firm MDA before moving on to the Canadian Space Agency (CSA). When Richardson first learned about her, Facciol was an Engineering Support Lead, providing real-time flight support during on-orbit operations and teaching courses to introduce astronauts and flight controllers to the ISS robotic systems. Today, Facciol is a Flight Controller for CSA/NASA.

“I found her contact information and reached out to her,” says Richardson. “She’s been an amazing mentor to me over the last five years. We’re still close friends, and she’s really helped influence my career path.”

With Facciol’s encouragement, Richardson applied to U of T’s Engineering Science program, eventually choosing the aerospace major. After her first year, she landed a summer research position in the lab of Professor Jonathan Kelly (UTIAS), working on simulation tools for a robotic mobile manipulator platform.

“Working in Kelly’s lab piqued my interest in robotics as they could be applied in space,” she says. “Researching collaborative manipulation in dynamic environments will push the boundaries of human spaceflight – during spacewalks, astronauts work right alongside  robots all the time.”

After her second year, Richardson travelled to Tasmania for a research placement facilitated by EngSci’s ESROP Global program. Working with researchers at the Commonwealth Scientific and Industrial Research Organisation, Australia’s national science agency, she created tools to analyze data collected during scientific mooring deployments, which help us learn more about our oceans over long periods of time. This work informs the design of next-generation mooring systems which, like space systems, must survive harsh and constrained environments.

Richardson was sitting in a second-year lecture when she heard the news that Canada had committed to NASA’s Lunar Gateway project, a brand-new international space station set to be constructed between 2023 and 2026. Unlike the ISS, which currently orbits Earth, the Lunar Gateway will orbit the moon and will serve both as a waypoint for future crewed missions to the lunar surface and as preparation for missions to even more distant worlds, such as Mars.

Energized, Richardson searched for a way to get involved. Her opportunity came in the fall of 2019, when she saw a posting on MDA’s job board. She immediately applied through U of T Engineering’s Professional Experience Year Co-op program, which enables undergraduate students to spend up to 16 months working for leading firms worldwide before returning to finish their degree programs.

Richardson started her placement in May 2020, right in the middle of the COVID-19 pandemic. She and her employer quickly adapted.

“I was working from home through the summer, but for my latest project I was able to go onsite to operate this robotic arm,” she says.

The robotic arm in question is a model of Dextre, a versatile robot that maintains the International Space Station. Richardson used it as a prototype part for the Canadarm3, which will be installed on Lunar Gateway.

Because the Lunar Gateway will be so far from Earth, Canadarm3 will be designed to be autonomous, able to execute certain tasks without supervision from a remote control station. Part of Richardson’s job is to create the dataset that will eventually be used to train the artificial intelligence algorithms that will make this possible.

In MDA’s DREAMR lab, Richardson guided the robotic arm through a series of movements and scenarios, with a suite of video cameras tracking its every move. She then tagged each series of images with metadata that will teach the robot whether the movements it saw were desirable ones to emulate, or dangerous ones to avoid.

“We had to capture different lighting conditions and obstacles of various sizes and colours,” she says. “My colleagues pointed out to me that because it’s me deciding which scenarios count as collisions and which ones don’t, the AI that we eventually create will be a reflection of my own brain.”

Apart from the opportunity to contribute to the next generation of space robots, Richardson says she’s enjoyed the chance to apply what she’s learned in her classes, as well as the professional connections she’s made.

“It’s my dream job,” she says. “I use what I learned in engineering design courses every day. I’m treated as a full engineer and a member of the team. The people I work with are extremely supportive and they talk to me about my dreams and goals. I love being surrounded by a team of talented and motivated people, all so passionate about what they do and about advancing space exploration. It’s an awesome opportunity for any student.”

This article was originally published in the U of T Engineering News.


© 2020 Faculty of Applied Science & Engineering