Posts Tagged: student research

Student research: helping to fight COVID-19 and other diseases

conceptual sketch of smart UV lamp

Conceptual sketches for amodular UV lamp designed by students under the supervision of Professor Joyce Poon. (Courtesy Professor Joyce Poon)


How can we safely and quickly disinfect surfaces with minimal cost?  This is a question that everyone from public transit operators to grocery store managers have had to ask since the COVID-19 pandemic began.

Frequent sanitizing of high traffic surfaces became a requirement to ensure public and employee safety.  But the cleaning can be time-consuming, difficult, and expensive.

Now a team of U of T Engineering students under the supervision of Professor Joyce Poon (ECE, EngSci 0T2) has designed a smart UV lamp with advanced sensors that could do the job more efficiently and cheaply than existing techniques.

At various times over the past year the team has included EngSci student Christopher Alexiev (Year 3 EngSci), Alec Xu (Year 3 EngSci), Bipasha Goyal (Year 3 EngSci), Jordan Hong (Year 3 EngSci), and alumna Saila Maham Shama (EngSci 2T0).

Read the full story of how they continued their fruitful research despite pandemic restrictions, and where the project is headed next.

Meet our alumni: Nathalin Moy (EngSci 1T6+1), energy policy analyst

Nathalin Moy

Nathalin Moy (EngSci 1T6+1) uses her engineering knowledge to help design public policy. (Photo courtesy of Nathalin Moy)


Technology does not exist in a void. To have a meaningful impact on society, its creators must consider social, cultural, and ethical impacts. New technological developments must also work within economic and legal constraints, and can inform government policy decisions.

No one knows that better than Nathalin Moy (EngSci 1T6+1), who graduated from EngSci’s Energy Systems Engineering major.  She combines her engineering education with public policy training in her work as a policy analyst as part of the Canada Energy Regulator (CER) Regulatory Policy team at Natural Resources Canada.

Moy helps guide the implementation of the Canadian Energy Regulator Act, which governs projects as diverse as interprovincial and international pipelines and powerlines, energy exports, oil and gas exploration, and offshore renewable energy.

Her interest in public policy was sparked in a third-year course on energy policy, but really took hold in her final year in EngSci.

Bridging the gap

Policy decisions, especially around energy, must be made with input from diverse stakeholders: technical experts, government policymakers, the general public, and others. One of the challenges for engineers is learning how to communicate complicated technical issues to audiences that may not have a technical background and—just as importantly—how to listen to perspectives they may not have considered.

Moy identified this gap in her fourth-year thesis project—The Engineer’s Role in Climate Change Policy—which applied an engineering approach to a qualitative research question.

Sparked by the 2016 launch of the Canadian climate change action plan, Moy investigated the role engineers can play in climate change policy. Through literature reviews and interviews with engineering, policy, and climate change experts she developed a conceptual model of the relationships between the various stakeholders involved. She identified a historical lack of involvement of engineers in shaping public policy, despite their relevant technical expertise. To encourage more engineers to step into the policy arena, she suggested education reform to help teach engineers the skills needed to engage in public policy processes.

“My thesis was a pivotal experience that prompted me to take the leap into public policy,” says Moy. “It also served as the motivation for my fourth-year capstone project—it’s the ‘why’ where the capstone work was the ‘how’.”

In her capstone design project, Improving Engineering Student Engagement in Energy Policy, Moy created a public policy assignment for third year courses that brought together U of T Engineering students and public policy students from the Faculty of Arts & Science to learn from each other’s expertise. Interdisciplinary student teams wrote briefing notes for hypothetical government representatives based on current energy policy issues. While the engineering students learned how to better communicate technical issues, the public policy students learned about the technical constraints that must inform policy.

Moy’s work helped both groups of students develop a better mutual understanding of the challenges on all sides of public policy.

Helping engineers consult the public

Moy continued delving into these interdisciplinary topics as a Master’s student in the Sustainable Energy Engineering and Policy program at Carleton University. Her thesis, titled An Engineer’s Guide to Public Engagement in Renewable Energy Projects, examined how public engagement relates to technical design in renewable energy projects.

Moy’s thesis includes eight guidelines to help engineers better incorporate public engagement into their work. She hopes that her work will help engineers create more effective public engagement, and may even inform new policies.

“In making the transition from engineering to public policy, the biggest revelation for me was that the approach to problem solving is basically the same,” says Moy. “There is an engineering design cycle, and there is a policy cycle. Both start with identifying a problem and go through a systematic process that ends with implementing a solution.”

A powerful combination

Moy sees the particular strengths of an academic background that combines technical engineering knowledge with policy. Many of the most serious problems we face today, like climate change, are too complex to be addressed by technology alone. “The grand scale behavioural change that needs to occur cannot happen without policy intervention,” says Moy. “To this end, neither an engineering degree without an understanding of the policy context, nor a policy degree without an understanding of the technical nature of the issue, can effectively tackle the problem at hand.”

Professor Aimy Bazylak, who serves as EngSci’s associate chair and the chair of the energy systems major, has seen a shift in expectations around how engineers engage with society to protect the public and ensure ethical conduct. “More than ever, we absolutely must take our impact on society into consideration, which can only be done by listening to a diverse community of voices,” says Bazylak. “I’m particularly inspired by graduates like Nathalin who are driven to create a sustainable society—at home and internationally.”

Moy’s involvement in social science disciplines exemplifies a common trait among EngSci students who often have multidisciplinary interests. She also credits her time in EngSci for helping to prepare her for her current job as part of a small team working on many different projects. “This position appeals to me in the same way that EngSci did,” says Moy. “There’s a good balance of breadth and depth that allows me to be a subject matter expert and yet understand and contribute to other related files going on around me.”

Meet more EngSci alumni.

EngSci students selected to compete in Canadian Reduced Gravity Experiment Design Challenge


The members of Team FAM

U of T Engineering’s Team FAM (Fluids Affected by Magnetism) includes Engineering Science students (L-R): Twesh Upadhyaya, Tyler Gamvrelis, Jacob Weber and Hanzhen Lin. (Photo: Courtesy Team FAM)


A team of U of T Engineering students is set to launch an experiment aboard the National Research Council of Canada’s (NRC) Falcon 20 jet as part of the Canadian Reduced Gravity Experiment Design Challenge (CAN-RGX).

Team FAM (Fluids Affected by Magnetism) is one of just four post-secondary teams selected for this year’s CAN-RGX, joining teams from the University of Calgary and Queen’s University. The teams will fly various experiments in microgravity during the flight campaign, taking place in Ottawa at the end of July 2018.

The flight campaign for the competition will take place over three days in Ottawa during the week of July 25, 2018.

“What really struck me was the opportunity to not only fly in microgravity but to conduct an experiment in microgravity and really see the progress from start to finish — from the proposal to conducting the experiment on a very unique testbed,” said Twesh Upadhyaya (Year 3 EngSci), one of the two primary mission specialists for Team FAM who will fly onboard the Falcon 20. “This year’s CAN-RGX is a unique opportunity for us to put into practice all of the engineering design knowledge we’ve gained so far.”

The competition challenges post-secondary student teams from across the country to design and build an experiment to be flown on board the NRC’s Falcon 20 — an aircraft modified for parabolic flight to simulate microgravity— in collaboration with the Canadian Space Agency. This is the second year a team from U of T Engineering was selected for the competition.

Team FAM’s experiment will examine heat transfer in paramagnetic fluids and their behavior under external magnetic fields. To carry out the experiment, the team developed a compact optical setup that enables them to “see” the temperature of the fluid. A fluid cell holds the paramagnetic fluid, and a set of two electromagnetic coils is positioned around it.

Team FAM’s prototype, which will be used to investigate the effectiveness of heat transfer mechanisms of a paramagnetic fluid in microgravity. (Photo: Courtesy of Team FAM)

The team’s literature review suggests nobody has ever visualized the heat distribution in a paramagnetic fluid under microgravity conditions before.

“We have a system that will — at the peak of the flight when we hit zero gravity — automatically trigger the experiment to start,” says Upadhyaya. “We’ll do one parabola, gather the data, and repeat the experiment with different parameters. The plan is to do eight to 10 parabolas.”

The team’s goal is to gain a better understanding of how paramagnetic fluids behave in zero gravity, which could lead to improved heat management in space craft, space stations and satellites; as well as a better understanding of the fundamental behaviour of magnetic fluids in microgravity.

“In a space station, they may want to shuttle heat from one component to another,” Upadhyaya says. “Paramagnetic fluids offer an interesting solution, and by testing various magnetic patterns in our experiment — although it’s only one small step — it’ll provide some idea of the most effective way to use paramagnetic fluids in heat transfer.”

Outreach is an important part of Team FAM’s goals, as they plan to share their project with high school students to showcase the opportunities available in engineering at the post-secondary level.

“We wanted to inspire high school students, get the word out there, and showcase what they can do in engineering at university — especially the University of Toronto,” Upadhyaya says.

This story originally appeared in the U of T Engineering News.

EngSci students take flight in microgravity to unravel physics mystery

Update Aug 1, 2017: Check out the team’s Twitter feed feed for photos and videos from their flight.

Team AVAIL — left to right, Caulan Rupke (Year 4 EngSci), Neell Young (EngSci 1T4 + PEY, UTIAS MASc candidate), Andrew Ilersich and Michael Lawee (both Year 4 EngSci) — has designed a physics experiment that will be carried out in simulated microgravity. Their results could accelerate the use of 3D printers to address key challenges for long-term space missions.

Not many of us get to experience what it’s like to float in space. This week several of our students will get to experience the next best thing — a flight on a microgravity aircraft where they will try to unravel a complex physics process.

Collectively known as Team AVAIL (Analyzing Viscosity and Inertia in Liquids), Neell Young (EngSci 1T4 + PEY, MASc Student UTIAS), Caulan Rupke, Michael Lawee and Andrew Ilersich (all Year 4 EngSci) will conduct experiments on a phenomenon known as the “liquid rope coil” effect.

See a video of the effect and learn more about the team’s mission.

Their work will have implications for 3D printing in microgravity during long-term space missions. Here on Earth, it could also help develop 3D printing techniques for new porous materials for use in biomedical engineering.

The team is in Ottawa July 24 – 28 for a flight on the National Research Council’s Falcon 20 aircraft. Read about their mission and follow their progress on Twitter and Youtube.

© 2020 Faculty of Applied Science & Engineering