Posts Tagged: thesis

Meet our alumni: Nathalin Moy (EngSci 1T6+1), energy policy analyst

Nathalin Moy

Nathalin Moy (EngSci 1T6+1) uses her engineering knowledge to help design public policy. (Photo courtesy of Nathalin Moy)


Technology does not exist in a void. To have a meaningful impact on society, its creators must consider social, cultural, and ethical impacts. New technological developments must also work within economic and legal constraints, and can inform government policy decisions.

No one knows that better than Nathalin Moy (EngSci 1T6+1), who graduated from EngSci’s Energy Systems Engineering major.  She combines her engineering education with public policy training in her work as a policy analyst as part of the Canada Energy Regulator (CER) Regulatory Policy team at Natural Resources Canada.

Moy helps guide the implementation of the Canadian Energy Regulator Act, which governs projects as diverse as interprovincial and international pipelines and powerlines, energy exports, oil and gas exploration, and offshore renewable energy.

Her interest in public policy was sparked in a third-year course on energy policy, but really took hold in her final year in EngSci.

Bridging the gap

Policy decisions, especially around energy, must be made with input from diverse stakeholders: technical experts, government policymakers, the general public, and others. One of the challenges for engineers is learning how to communicate complicated technical issues to audiences that may not have a technical background and—just as importantly—how to listen to perspectives they may not have considered.

Moy identified this gap in her fourth-year thesis project—The Engineer’s Role in Climate Change Policy—which applied an engineering approach to a qualitative research question.

Sparked by the 2016 launch of the Canadian climate change action plan, Moy investigated the role engineers can play in climate change policy. Through literature reviews and interviews with engineering, policy, and climate change experts she developed a conceptual model of the relationships between the various stakeholders involved. She identified a historical lack of involvement of engineers in shaping public policy, despite their relevant technical expertise. To encourage more engineers to step into the policy arena, she suggested education reform to help teach engineers the skills needed to engage in public policy processes.

“My thesis was a pivotal experience that prompted me to take the leap into public policy,” says Moy. “It also served as the motivation for my fourth-year capstone project—it’s the ‘why’ where the capstone work was the ‘how’.”

In her capstone design project, Improving Engineering Student Engagement in Energy Policy, Moy created a public policy assignment for third year courses that brought together U of T Engineering students and public policy students from the Faculty of Arts & Science to learn from each other’s expertise. Interdisciplinary student teams wrote briefing notes for hypothetical government representatives based on current energy policy issues. While the engineering students learned how to better communicate technical issues, the public policy students learned about the technical constraints that must inform policy.

Moy’s work helped both groups of students develop a better mutual understanding of the challenges on all sides of public policy.

Helping engineers consult the public

Moy continued delving into these interdisciplinary topics as a Master’s student in the Sustainable Energy Engineering and Policy program at Carleton University. Her thesis, titled An Engineer’s Guide to Public Engagement in Renewable Energy Projects, examined how public engagement relates to technical design in renewable energy projects.

Moy’s thesis includes eight guidelines to help engineers better incorporate public engagement into their work. She hopes that her work will help engineers create more effective public engagement, and may even inform new policies.

“In making the transition from engineering to public policy, the biggest revelation for me was that the approach to problem solving is basically the same,” says Moy. “There is an engineering design cycle, and there is a policy cycle. Both start with identifying a problem and go through a systematic process that ends with implementing a solution.”

A powerful combination

Moy sees the particular strengths of an academic background that combines technical engineering knowledge with policy. Many of the most serious problems we face today, like climate change, are too complex to be addressed by technology alone. “The grand scale behavioural change that needs to occur cannot happen without policy intervention,” says Moy. “To this end, neither an engineering degree without an understanding of the policy context, nor a policy degree without an understanding of the technical nature of the issue, can effectively tackle the problem at hand.”

Professor Aimy Bazylak, who serves as EngSci’s associate chair and the chair of the energy systems major, has seen a shift in expectations around how engineers engage with society to protect the public and ensure ethical conduct. “More than ever, we absolutely must take our impact on society into consideration, which can only be done by listening to a diverse community of voices,” says Bazylak. “I’m particularly inspired by graduates like Nathalin who are driven to create a sustainable society—at home and internationally.”

Moy’s involvement in social science disciplines exemplifies a common trait among EngSci students who often have multidisciplinary interests. She also credits her time in EngSci for helping to prepare her for her current job as part of a small team working on many different projects. “This position appeals to me in the same way that EngSci did,” says Moy. “There’s a good balance of breadth and depth that allows me to be a subject matter expert and yet understand and contribute to other related files going on around me.”

Meet more EngSci alumni.

Alumna named to Forbes 30 Under 30 list

Deb Raji


Recent EngSci graduate Inioluwa Deborah Raji (1T9) is among the leading innovators on the Forbes 30 Under 30 2021 list.  She was recognized in the category of Enterprise Technology for her impactful research on racial and gender bias in AI, and for holding to account companies that use biased technology.

Her work, which she began while still an undergraduate student, has made international headlines and has already helped set new for accountability standards within the AI industry.

Raji was recently also named to MIT Technology Review’s Top Innovators Under 35.

EngSci thesis project selected as 2020 INFORMS Undergraduate Operations Research Prize Finalist

Anna Deza


Congratulations to recent graduate Anna Deza (EngSci 2T0)!  Her fourth year thesis work has been selected as one of 10 finalists for the 2020 INFORMS Undergraduate Operations Research Prize.  Deza conducted this research–titled A Multistage Stochastic Integer Programming Approach to Distributed Operating Room Scheduling–under the supervision of Professor Merve Bodur (MIE).

Deza’s gained extensive research experience during her undergraduate studies in EngSci.  She completed three summer research placements, including two through the Engineering Science Research Opportunities Program (ESROP): first with Université Paris-Saclay after her first year, and at Technion in Israel after her third year.  She is now a PhD student at the University of California at Berkeley, specializing in industrial engineering and operations research.

“EngSci is a program that really fosters undergraduate research,” says Deza.  “I’m grateful to the thesis course coordinator, Professor Alan Chong, for some very helpful workshops he provided that contributed to the quality of my work.”

The final competition of research presentations will take place in the second week of November at the virtual INFORMS Annual Meeting.  Good luck, Anna!

Holding companies accountable for biased AI – meet Year 4 student Deb Raji

thesis student

Deb Raji (Year 4 EngSci + PEY) and researchers at the MIT Media Lab identified a need for stronger evaluation practices to mitigate gender and racial biases of AI products. (Credit: Liz Do)


As artificial intelligence (AI) software becomes more widely used, questions have arisen about how social biases may inadvertently be amplified through it. One area of concern is facial detection and recognition software. Biases in the data sets used to ‘train’ AI software may lead to racial biases in the end products. Since these are sometimes used in law enforcement, this raises civil rights concerns.

Year 4 EngSci student Deb Raji (1T8 PEY) and collaborators at the Massachusetts Institute of Technology (MIT) recently won “best student paper” at the Artificial Intelligence, Ethics, and Society (AIES) Conference in Honolulu, Hawaii, for identifying performance disparities in commonly used facial detection software when used on groups of different genders and skin tones. Using Amazon’s Rekognition software, they found that darker-skinned women were misidentified as men in nearly one-third of cases.

Raji hopes that this work will show companies how to rigorously audit their algorithms to uncover hidden biases. “Deb Raji’s work highlights the critical need to place engineering work within a social context,” says Professor Deepa Kundur, Chair of the Division of Engineering Science. “We’re very proud of Deb’s achievements and look forward to her future contributions to the field.”

Read about Raji’s research here.

© 2020 Faculty of Applied Science & Engineering